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Introduction

SLAM: To navigate in an unknown environment, a mobile robot needs to build a
map of the environment and localize itself in the map at the same time.

Necessity: Generally robot's position problem is solved by a GPS which provides a
good accuracy for the robot. However, in places where the GPS data is not
available, or not reliable enough, we need some other reliable method to estimate

the robot’s position precisely.
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RGB-D Limitations & adaptations

RGB-D cameras (such as Kinect) operational limitations:
Limited field of view preventing an agile operation.

*Short range, not providing the scale for typical outdoor applications.
Infrared saturation in direct sunlight.

Comparisons chart:

RGB-D | 3D Laser ToF
Field of View H7° > 180° | 45° — 70°
Max Range dm > 50m Sm-10m
Min Range 0.6m <0.1m N/A
Lighting Indoor Any Indoor
Weight 1.5Kg 4.5Kg 0.5 Kg
Price <$200 >$2000 >$2000
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Kinect Depth and RGB data
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Sensors and techniques

Laser-based SLAM (2D/ 3D Laser scanners)

Visual Monocular SLAM (Monocular

Camera)
R [ RGB-D SLAM
2 « (Kinect/Asus)
Stereo SLAM (Stereo Camera E i
pair)
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Why RGBD SLAM?

Currently, most of robotic mapping is performed using sensors that offers only a
2D cross section of the environment around them.

Acquiring high quality 3D data was either very expensive or had hard constraints
on the robot movements.

Research has mainly focused on laser scanners to solve the SLAM problem and
developed some methods making use of stereo and mono cameras.

Kinect Camera developed by Prime Sense and Microsoft has considerably
changed the situation, providing a 3D camera at a very affordable price.
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VSLAM (Visual SLAM)

Goal: Build a 3D map from RGB and depth information provided by a
camera, considering a 6 Degrees-of-Freedom (DOF) motion system.

Idea Summary
Estimating the poses of the camera from its data

stream (video and depth), in order to reconstruct the
entire environment while the camera is moving. As the
sensory noise leads to deviations in the estimations of
each camera poses with respect to the real motion, the
goal is to build a 3D map which is close, as much as
possible, to the real environment.
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RGB-D SLAM

In the past, to solve the inherent problem of drift and provide a reliable
estimation of the camera poses, most of the projects have used
techniques such as Extended Kalman Filtering (EKF) or particle filters.

Approach described here is the RGB-D SLAM algorithm close to the
technique developed by Univ of Freiburg.

It is basically a consortium of different standard algorithms resulting in
a very effective solution for 3D mapping using RGB-D camera.
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Features extraction techniques

Harris Corner :Acorner detector, by Harris and Stephens
SIFT: Scalar Invariant Feature Transform, by David Lowe
SURF: Speeded Up Robust Feature

NARF: Normal Aligned Radial Feature

BRIEF: Binary Robust Independent Elementary Feature

Two aspects concerning a feature: the detection of a keypoint, which
identifies an area of interest, and its descriptor, which characterizes its
region.

Feature Detector Descriptor
Harris Corner Yes No
SIFT Yes Yes
SURF Yes Yes
NARF Yes Yes
BRIEF No Yes —0—<Y|p)
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SURF

Speeded Up Robust Feature
'Used for feature extraction and matching

STEP 1:

Interest points are selected at distinctive locations in the image like blob, corners
and T-junctions.
STEP 2:

The neighborhood of every interest point is represented by a feature vector,
STEP 3:

Descriptor Vectors are matched between different images.
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Input Image

Build Integral Calculate Hessian
Image Determinant

'

Filter Scale

Resultant “Hessian Determinant”

different scaled Gaussian filters

Approximated Gaussian Filters

stack which are images filtered using

Non-Max > Calculate Calculate and
Suppression Orientation il Normalize Descriptors
| l Vector<float> l Vector<float[64]> |
OrientationVector :
‘Detected Descriptor Vector
Scale Y - T — '
; 5
Vector<int> Vector<float2>| |point Position (x,y)

Output: All 4 Vectors make up set of Interest Points (ipoints)
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Surf

Features Extracted using
SURF

Features
Matching:

Frame t Frame t+1
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Feature extraction &
matching using
SURF

Pose estimation
using RANSAC

Pose refinement
using ICP

Pose Graph solver
for global
consistency
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RANSAC: RANdom SAmple Consensus
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Adata set with many outliers for which a line has to be Fitted line with RAMSAC, outliers have na influence on the
fitted. result.
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Ransac .... Algorithms

input:
data - a =2et of observation=
model — a model that can be fitted to data
n — the minimum number of data reguired to fit the model
k - the number of iterations performed by the algorithm

t — a threshold value for determining when a datum fits a model

d - the number of close data values required to assert that a model fits well to data
ontput:

best model - model parameters which best fit the data (or nil if no good model is found)

best consensus set — data points from which this model has been estimated

best:errnr = tEe error of this model relative to the data
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RANSAC ..... pseudo code

while iterations < k

maybe inliers := n randomly selected wvalues from data
maybe model := model parameters fitted to maybe inliers
consensus_set = maybe inliers

for every point in data not in maybe inliers
if point fits maybe model with an error smaller than t
add point to consSensus_ sSet

if the number of elements in consensus st i= > 4

{this implies that we= may have found a gqood mod=sl,

now test how good 1t 1s)

thi=s model := model parameters fitted teo all points in consensus sSet

this:errnr := a measure of how well this model fits these pnints_

if this error < best error
{wve have found a modsl which i1s better than any of the previous ones,
kesp 1t wntil & better one 15 found)

best model := this model
best consensus set = consensus_set
best error := this error

increment iterations

retorn best model, best consensus =set, best error




—_—
1

Feature extraction &
matching using
SURF

Pose estimation
using RANSAC

Pose refinement
using ICP

Pose Graph solver
for global
consistency
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Pose refinement using ICP

*[terative Closest Point algorithm

*Pointsin the sourcecloud are matched with their nearest
neighboring pointsin atarget cloud.

Then arigid transformationis found by minimizing the 3-D
error between associated points.

*This may changethe nearest neighbor for points.

*This algorithnm is effective when two cloud are already nearly
aligned.
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Pose graph optimization

*As the pair-wise pose estimates between frames are not
globally consistent.

*So we optimizetheresulting pose graph using posegraph
solver.

Outputis globally consistent 3D model of the environment.
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Pose graph optimization
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SLAM experiments

We experimented with three different types of robots in varying ground
profiles and lighting conditions.

*All three robots were custom built in our lab and controlled by ROS
(Robot Operating System).
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Indoor Slam (EE Dept, LUMS
Campus)

*To establish baseline performance, we ran the robots in different indoor
situations under variations of light intensity, dynamic obstacles,

environment scales etc.
*Despite a compact environment, the robot moved collision free and

built the map.

Indoor SLAM produced by Hanoon in our lab.




Indoor Slam

RGBDSLAM 26 PM @ root
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Sending Whole Model Rotation: 10.93, Distance: 0.159m | | Ignored, Graph Size: 91N/275E, Duration: 0.450000, Inliers: 0, x*: 12529.073977
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Qutdoor slam

We used different kinds of robots and three different kinds of
environments.

Outdoor Urban SLAM

Heavy vegetation SLAM

*Dirt Road SLAM

*The operation was significantly slowed down as compared to indoors
due to intermittent availability of data and occasional failure to find
correspondence points.

*Still, the overall results were satisfactory.
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Dirt road slam (LUMS campus)

Dry canal profiling with
robot Dul-dul.




Outdoor urban slam (SSE Bldg,
LUMS campus)

RGB-D SLAM with robot Duldul in an outdoor structured
environment.
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Heavy Vegetation slam

® ©©0 RGBDSLAM < A 7:45PM @ root (O

GraphSLAM Rotation: 6.06, Distance: 0.224m | | Ignored, Graph Size: 93N/190E, Duration: 0.490000, Inliers: 0, x% 1067.094080

Arena mapped during Beirut trials.
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Loop closing performance

We designed an experiment for outdoor environment with significant
process noise in the robot motion.

*SLAM was performed by typical loop closing.

We found out that in the first loop, the robot lost the global consistency
and did not stitch the map so well.

*But in subsequent loops it improved the mapping performance and
errors were subsequently reduced.

*In a typical experiment, the results after third loop was nearly globally
consistent.

*This matches with the objectives of mine-sweeping.
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Loop closing experiment (LUMS)
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At Other Labs




Thank you !
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